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INTRODUCTION. Let J denote a compact interval, say [0,1],
E -- an Euclidean n-space, M -- the spzace of Lebesgue mea-
surable functions of I into E., For any u, v € M the
equality u = v will mean wu(t) = v(t) almost everywhere
(a.e.) in J. The topology in M will be that given by
the convergence in measure,

The purpose of this paper is to study in detail the
range of integrals of a subset K C M which satisfies the
following three conditions : .

(i) K is closed in M with respect to convergence
in measure o .

(ii) lfJu(T)dT[ sm for each u € K

(fii) If w,ve K, 0 <t1 <1, and w(t) = u(t) if
0=ttt and v(t if t7 £t =1, then we X
1 1

The motivation to study the range of integrals of
such a class K comes from linear contirol theor Yo . Indeed
let us consider the system of the form

5(t) = A2)x(1) + 2(t,u(t)), ()

where the function f satisfies the well know Caratheodory
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conditions, Take as admissible control functions the class
of Lebesgue measurable wu: I - U, where U is a compact
subset of an m-dimensional space. Any solution of (S) can

be represented in the form x(t) = X(t)(x +ftv(T)dT),where

X(t) is the fundamental matrix solution o? the corresponding
homogeneous system, x is the initial value for t = 0 and
v(t) = X-3(t)f(t,u(t)). It is easy to verify that the class

= (viv(t) = X H()£(t, u(t)),u -~ adnissible)

satisfies conditions (i),(ii), and (iii). A basic result A
for the existence of a time-optimal solution for (S) is that
the so-called attainable set

a(t) = (x: X(t)(x + f v(T)dT), v € L}

is convex, compacb and contlnuous in t%. Up to a linear
transformation and a translation this set is seen to be the
range of integrals over L. This result among others will
be proved here but probably more interesting is an extension
of LaSalle's "bang-bang" principle.. Roughly speaking the
"bang-bang" principle as stated by LaSalle (2) says that in
general one can restrict the range U of admissible controls
to a subset U, without restricting the attainable set, In
LaSalle's case f was linear in wu,- U was a compact cube
and he proved U, to be the set of vertices of U. Later
this result has been extended by several authors, cf. for
example (1),(3),(4). Our extension of the "bang bang" prin-
ciple is Theorem 1 and states that there is a smallest sub-
class Ky of K satisfying (iii) but not necessarily (i)
such that the range of integrals over Kg is the same as
over K. In LaSalles case the restricted class of "bang-
bang" controls satisfies (i), too.

The results presented here generalize those recently
published by the author in (5). In (5) the class K was
given by (v € M: v(t) € G(t)} where G 4is a measurable
map [cf. (6)] of T into the space of compact subsets of E.
In the situation concerning system (8) discussed asbove the
set-valued map is given by [X"l(t) f(t,u):u € U},

There is a close connection between our results and
the Liapunov theorem on the range of non-atomic vector val-
ved measures. For details we refer the reader to (5).

The following notations will be used. By (x,yf, X,
y € E, we denote the scalar product of X and y, by |x
the Fuclidean norm of x € E. Thus |ul and (u,v) if u,
v € M will stand for the function teking t - |w(t)| and
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and t ~a(u(t),v(t)), respectlvely ¥ I and Iy we de-
note the integral operator and fo respectively. Thus
I(u) = fJu(T)dT and I(K) = [I(u) ue€ Kj. :

ILEXICOGRAPHICAL ORDER IN E AND IN M. Let x,y € E and

let (x3}, (yi} denote the coordinates of x and y res-
pectively with respect to a fixed coordinate system in E.

We will write

1

sy iff X% Y5 for 1 =1,:...,k and if k <n

then xk+l < yk+l'

In particular, k may be equal O. The relation (1) is the
so-called lexicographical order in E and it is easy to see
- that it is a linear order. If n = 1, then (1) is the nat-
ural order for reals. If, in (1), k <n then we will use
"<"instead of "s", Since the order is linear, any finite
subsets of E admits a unique maximum with respect to (1).
Thus we have

(1)

lex.max {xl] =x? iff x* sx) for i=1

l5iss IRERFR (2)
=1= .

If, u,v €M then we will write

usv iff u(t) £ v(t) a.e. in ‘J ? | (3)

and refer to (3) as the lexicographical order in M. The
order "s" in M 1is no longer linear but is a lattice, since
for any finite set {u'}, L £iss of M the lex. sup
exists and we have

= lex sup (ul} iff v(t) = lex.max {ul(t)] ()
lsiss ) 1=iss

We note the following obvious propositions,

Proposition 1, If u,v € M are integrable-and u £ v then
I(u) = I(v). :
Proposition 2, If u £ v and I(u) = I(v) then u = v.
Proposition 3. If wu,v € M are integreble, w = lex.sup{u,v},
I(u) =P = (pl)) I(V) = ’(QJ_)) I(W) =TI = (ri)J i=l)"',n)
and if ri= ¢y= pj for i = 1,...,k £ n, then wuj= vy for
i=1,...,k where u4(t), vl(t) are coordinates of u(t)
and v(t) TQSD°CulV87y.

" Notice that the lexicographical order in E or M de-
pends on the coordinate system in E, Thus if  ¢= (x g ey XB),
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xle E, is a basis in E then by "s," we will denote the
lexicographical order corresponding to E&. In the seguel
we restrict ourselves to the orthonormal bases in E. Thus
we will be interested in the set
= { ( ™), = s,
g g = x 3’ ..’X X x ) =

137 i, J=1,...,n};

vhere aijz l if i=j and O otherwise.

Let®™ A CE be compact, then to each ¢ € = there is
a unique point denoted by e(A,¢) of A, which is the lex-
icographical maximum of A with respect to "s;", and is
determined by the conditions: e(A,t) € A and x S;e(A,t)
for each x € A, The next proposition can be found in (7)
in a slightly different form but for co*oleueness we in-

clude here a detailed proof.

Proposition 4. TLet A CE be compact, then the set
B= N (x: x5.e(at) ' (5)

gex

is the convex hull of A. hbreover; the set

) = {e(A,t): &t € 5} . (6)
is the profile of B of B; that is, the set of extreme
points of B. )

Proof. Let CCE be convex and let pfC. Then there is a
ten sucn that .

p for each x € C, - (1

x <
3
If n=1 then (7) is obvious, For n arbitrary there is
an a €E, |a] = such that (p,2) 2 (x,2) for each xe€C,

If (p a) > (x a) for each x € C, then (7) holds for any

tE = (x4,...,x ) €= if xl=a, If (p,2) = (x,2) for soxe
X € C then the set Cj = CN{x:(x,2)=(p,2)} 1is non-expiy,
convex and of dimension n-1 at the rost, and p does not
belong to C; but does belong to the hyperplane conteining
Cy. Thus we have the sane situation but in a smaller dimen-
sion. Therefore an easy induction argument completes the
proof of ({) et C be now the convex hull of D given
by (6). It follows from (7) that if p # C then DE3
given by (5). Hence BC C. But B 1is convex and DCAC B,
Therefore C as the convex hull of D is containzd in B.
Hence C =B and B given by (5) is the convex hull of E
and since D CACB, B 1s the convex hull of A as well,
In particuler B 1is compact., To end the proof, let us




recall that a point b € B is an extreme point of B if

and only if B\(b} is convex. ILet b = e(A,t)eD. By (5),
B\(b}=BN {x:x < e(A £)}. Manifestly the latter set is con-
vex for each 5 €.q and we conclude that D CB. Suppose
now that b € B. Then B\{b} is convex and by (7) there is
a ¢ € = such that x <tb for each x € B\{b}. Hence b =
e(B,t). It is easy to see by (5) that e(A,¢t)= =e(B, &) for each
£ € E, Therefore b € D and in consequence B CD which
completes the proof,

PRELIMINARY LEMMAS. In this section we will always assume
that the class K satisfies conditions (i), (11) and (iii),
A coordinate system in E is fixed.

LEMMA 1. Let (A3}, 1 £ 1 sk bea decomp051tlon of J into
k disjoint measurable subsets Let {ul}isizkx C K. Put
u(t)=ul(t) if t € Aj. Then u € K.

Proof. Since Aj; can be approximated arbitrarly closely by
disjoint unions of intervals, therefore by (iii) u can be
approximated by a sequence [ul} C X converging to u in

measure. Thus (i) completes the proof.

LEMMA 2. The lexicographical order on K is a lattice; that
is if u!'e X for 1i=1,...,k then so does v= =lex, sup (ul}

Proof. By (1), v(t)=ul(t) if t e Ai[t:ui(t)—lexim;xlg&(t)],
—_— “ - £is

wl(t) < wi(t) if j < i). Tt is easy to see that these Aj
satisfy the assumptions of Lemma 1. Hence the latter fin-
ishes the proof.

IEMMA 3. Let u = (ui, ui)eK for i=1,2,... . Assume
that u} »uQ a.e. in 7 ir j=1,...,k-1,1sksn and put u¥=
Lim, sup ul. “Then there is a v = vl,...,vh)eK such tha

vj =g If §=1,...,k.

Proof. Take an & > 0. There exist iy, sets F,GCJ,
u(F) <€, pu(G) <€ and an integer p such that

|u§(t)_u§(t)|-<s if 15jsk-1, 124 end t e J\F (8)
and '

min |ui(t)-p§(t)l <€ if te J\G. (9)

i sisi o+
o o P

| Put AS=[t:[ui°+S(t)_u§(t)l <é and [ui0+r(t)—uz(t)[ ze

for r<s}, s = 0,1,0¢4,0. Clearly the Ag are measurable
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and disjoint and, by (9), Us_oA, D J\G. Define v(t)

i ' _
u °+S(t) if t € Ag, s =0,1,s0.,p end v(t) = u(t) if

t e J\UTzoAs’ wnere u € K. By Lemma 1, veK and by (8)
and (9) we get i

- |vj(t)-u§(t)| <& if t e J\(FUG), 1 S j S k. (10)

Ineq. (10) shows that a sequence vieK can be defined such
that vi->u® a.e. in J for j=1,...,k. If k=n then the last
statemeht afid (i) proves Lemma 3. If k < n, then it proves
that {vl} satisTies assumptions of Lemma 3 for k increased
by l. Hence the proof can be completed by induction.

COROLIARY 1. Let S be a linear subspace of E and denote
by Kg the class of functions of J into S obtained by
the orthogonal projection of elements of K into S. Then °
Kg satisfies (1), (ii) and (iii).

1

Proof. Conditions (ii) and (iii) obviously hold for K,
while condition (i) follows from Lemma 3. :

COROLIARY 2. There is an integrable m: J - R such that
| u(t)] = m(t) a.e. in J for each u € K,

Proof. By Corollary 1 Kj={uj:(uy,...,u;,v,...,u,)eK}
satisfies (i) (ii) end (iii) for each i=1,...,n. By (ii)

- iy - A
o = supveKiI(v) < 4+, Let (v'} C K, be such that

I(v') >a; as j —wo. By Lemma 2 without any loss of gen-
erality we may assume that [VJ} is non-decreasing. Thus
there exists limyvJ = ¢35 and by (i) ¥; € X;. Therefore
I(vJ) s I(¥31) = & end as a consequence I(V¥)) = a. Now for
any v € Kj, I(sup{v,wi})= a and Proposition 2 implies that
u s y¥; for each v € Kj. Similarly one cen prove that there
is @3i€K; such that @i = v for easch v € K., Since i is
arbitrary we get Corollery 2 by putting m(t)=max(|y(t)],
lo(t)]), vhere ¢ = (¥1,...,¥%,) and © = (91,...,0,).

‘Now we will prove the main lerma, )

LEMA b Suppose {ul} €K 2nd assume that I(ui) —p as
i »«, Then there is v € X such that

p s I(v). (11)
Proof, Suprose that ul converges in the Ly norm for
3=1,...,%k-1 to u? blt does not converge if j=k. Such a
k exists, since ﬂ may be egual 1. t follows that

I(u3) —al(ug) =py if § =1,k (12)
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If k-1 =n then (12) completes the proof of (11). If
k £ n ‘then for Jj=k +there is an &€g > 0 such that for
each i, there are s2 i, and r 2z iy with I(|uf-uf|)2€o-
Without any loss of generallty we may assume that ui — u®
a.e. 'in J as 1 »». Let us choose i, such that J
lI(ul) -p | <&, /4 if iz iy, where p, is k-th coordinate
of p By these inequalities I(sup(uk,un)) ~Py >e,/k. Put
uP(t) =, lim, sup wi(t) and uwl - syup >; (U} Then we see
that v1 1% non- 1ncrea31ng vi —auim"as i -« and by the
last inequality I(vi) z p € /4 if i 2 i . Since by Cor-
ollary 2 the v* are bounged by an integrable function,
Lebesgue theorem implies that

I(v) _>1(u§) 2p +€/h>0 - (13) |

It follows from Lemma 3 that there is v € (vy,...,v )€ K
- such that vj = 1w if j=1,...,k and for this v (12) and
(13) imply (il) wllich was to be proved.

_ PRINCIPAL RESULTS. Again we assume throughout this section
that K satisfies conditions (i),(ii) and (iii). By e(X,¢)
we denote the maximal element of K with respect to "§§"
¢ge =, By Lemma 2 if e(X,£) exists then it is uniquely
defined up to a set of measure zero., We will call e(X,¢)
an extremal element of K. The set of extremal elements of
K will be denoted by E(K), then E(X) = {e(K,t):¢t € =).

THEOREM 1. For each ¢ € & there exists an extremal element
e(K,t) of K corresponding to ¢ and

I(e(K,£)) = e(I(K),t) = e(I(X), &) for each ¢ € =. (1)

Proof. By (ii) the set I(K) is bounded; thus, the closure
I(K) of I(K) is a compact subset of EB, Let us fix

¢ €= and let p = e(I(X),t). By Lemma U there is v € K
such that p S I(v) But I(v)eI(K) implies by the defini-
tion of p that I(v) = €, p. Hence I(v) = p and peI(K).
Let now u € X be arbltr*ry and w = lex,sup(u,v}. We have

Ix

u sgw, v Ew oend p=I(v) £ l(w) ¢ D. Therefore by Pro-
p031tion 2, v=w, Hence u %,v for each u € K. This
means = e(K ¢) and (14) is manifestly satisfied.

THEORE}M 2, The set D = {x=I(e(K,t):t € &} = I(E(K)) is the
prollle B of the convex hull B of I(X).

Proof. By (1k4), D = (x:x = e(I(K),t),¢ € =},2nd Proposition
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from such on a set of measure zero). Also if we knew that
the number of discontinuities of e(K,&) 1is finite and
bounded for ¢ € Z, then by Theorem 4 there is a subset Ky
of K composed of piecewise continuous and piecewise extre-
mal functions such that I(K,) = I(K) and the number of
discontinuities of u is finite and bounded if wu € K_.
This is the case if A in (S) is constant and f(t,u) =
B(t)u, where the entries of B are piecewise analytical and
U 1is a compact polyhedron (cf. (1),(3)). This is also the
case when G 1is a continuous set™: valued function in the
sense of Hausdorff with values being strictly convex and
compact subsets of E, since in this case e(G(t),&) is
continuous in t for each ¢te =, Note that because of
strict convexity of G(t), e(G(t), g) is uniquely determined
by the first vector of E. .

Theorem 5, under essentially the same assumptions has
been obtained by Neustadt (4). Note that as in (4) we daid
not make any convexity assumption concerning K.

Theorem 6 has some implications concerning the unlque-
ness of time optimal solutions of the system (S). For de-
tails, we refer the reader to (3).
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4 implies Theorem 2. '

Notice that both Theorems 1 and 2 hold if J 1is re-
placed by [O,t], 0 <t s and I by I.. Thus if we de-
note by B(t) the convex hull of TI¢(K), then by Theorem 2
we have the equality B(t) = I (E(K)). '

THEOREM 3. The set valued function on J taking t - B(t),
the convex hull of It(K), is continuous in the Hausdorff
sense;, that is

max (r(e,B(s)), r(v, B(t))) -0 as |s-t] 20 (19)
a € B(t),b € B(s) '

where- r( , ) stends for the distance of a point from a set
‘in E.

Proof, Let B,C be two compact convex subsets of En

There are b € B and ¢ € C such that |b-c| = r(e,B) =
maxyec r(x,B). Note that if C were an interval, then ¢
can be asswaed to be one of the ends of C. This remark
shows that in the general case ¢ can be assumed to be an
extreme point of C and that there is a & ¢ = such that
c = e(C,t). But obviously, r(c,B) £ |x-c| for each xeB,.
In particular, we have the inequality |b-c| = Ie(B,g)-
e(C,t)] for a t € E . Therefore the distance in (18) can
be estimated by |e(B(t),t)-e(B(s),e)| = [{|e(K, e)(t)|at for

» —

. the same S € = and Corollary 2 completes the proof,

THEOREM 4 For eacn b € B, the convex hull of 1I(K), there
are two sequences ,g €5 and 0 =ty <ty <...< tg=
1 such that if we puu
i . .
u(t) = e(K,¢7)(t) for t,  St<t,i=l,... K, (16)
then k £ n+l and '

= I(u). (17)-

Proof. The proof will be by induction with respect to n,
Thus suppose first that' n=l. In this case = consists of
two elements and by Theorem 1 so does E(K). That is, there
ere @, ¥ € K such that ¢ £ usVy for each ue€ K. The
set B is the interval [I(@),I(v)]. Consider the function
t. 1
M) = [ u(t)ar + [ o(t)at . : - (18)
4 o t

Manifestly A 1is continuous and mazps J onto [I(9),I(V)]
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Thus for each b € B, there is a tj€ J such that A(t1)=b.
Setting w(t) = ¥(t) if 0 st <t; and u(t) = @(t) if
t) St 1 we see that u is of the form (16) and (17)
holds.. ‘ : .

- Suppose now that n 1s arbitrary and assume thai
Theorem & holds for n-1. Let b € B and take an arbitrary
€ € E. Consider the function -

1

x(t) = b - ft e(K,E)(v)dv . -~ (19)

Since both x(t) and B(t) are continuous, there is a
TeJ such that x(T) belongs to the boundary of B(T) and
if T<1 then x(t) € inf B(t) for T <t S 1. Since
B(T) 1is convex and compact there is an a ¢ EP, |o| =1
such that

a = (x(T),é) = max (x,a) for x € B(T). (20)

B

Let =, = (gem &= (xl,...x™),x} =2}, Put B, =
B(T) N {x: (x,a) =a} and A = Ip(X) N {x: (x,2) =ca}. It
is easy to see that B, 1s compact and convex, the profile
By of Bz 1is equal to (I(e(K,¢): €<=} CA. Thus A is
not empty and B, is equal to the convex hull of A as well
as of A. : )

It follows from Proposition 3 that Ip(u)eh, where
uek, if and only if (u(t),a) = ¥(t) a.e. in [0,T], where
V has the property that for each ueK (u(t),a) = v(t)

a.e. in J. Therefore A can be considered as Ig(X,)

where K, = {uéK:(u(t),2) = ¥(t) a.e. in J} and "¢ is
uniquely defined by K and a, Since each u€Xy czn be
uniquely decomposed into the sum v+ay, where v 1is a fune-
tion of J into Ej and Ej is the n-1 dimensional sub-
space perpendicular to a, the sel K; can be considered as
a class of functions of J into n-1 dimensional Euclidean
space. Obviously, Kz satisfies conditions (i),(ii) end
(iii) and by our assumption we can apply Theorem L to X,,
Hence there is a ue€X; such that u(t) = e(Kg,:t)=2(K, ) (t)
if tij ) st <ty, greE, i = 1,...,k-1, t, =0 < t3<...<
tx.1= Ty and such that : '

I(u) = x(T) S | (21)

Setting u(t) = e(K,E)(t) if ty.1 =TSt £1-=
f the 1

t;,(tnus
putting &X = E) we see that u is of the form (15) and
(19) and (21) implies (17). Manifestly k £ n+l since
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k-1 =n

CONCLUDING RESULTS. In this section we state three immedi-
- ate consequences of the preceding theorems.

THEOREM 5. If K satisfies (i),(ii) and (iii) then I(X) is
convex and compact,

Proof. By (iii) any function of the form (16) belongs to K;
thus Theorem 5 follows from Theorems 2 and L.

If u € K is an extremal element of I (or I(u) is
an extreme point of I(K)) then the following implication
holds (compare Proposition 1 and Theorem 2):

if veK and I(v) = I(u) then v =u (22)

On the other hand one can see from the proof of Theorem k
that if b € I(X) 1is not an extreme point of I(X) +then
there are at least two different wu,v € K such that I(u)=
I(v) = b. Therefore we have

THEOREM 6. If K satisfies (i),(ii) and (iii) and u € X
then u is an extremal element of K if and only if the
implication (22) holds for wu.

let ¥, denote the class we obtained by cloSLna E(K)
with respect to property (iii). Elements of K, may be
referred to as piecewise extremal elements of K

THEOREM 7. If K3 C K satisfies (1ii) and 1(Kp) = I(K),
then Ko C Ky

Proof. By Theorem 6, K, must contain E(K). The dellnltlon
of Ko and K; satlsflng (iii) imply X3 DK,

Theorem 7 says that K, 1is the smal1est subclass of K
satisfying (iii) and having the same range of integrals as K.

Let us observe that if K = {ueM:u(t)eG(t) a.e. in 'J}
and G 1is a measurable set-valued function with values be-
ing compact subsets of E then e(K,&)(t)=e(G(t),&) (cf.(6))
So in that case the extremal elements of K can be computed
if one knows G. '

Under some more restrictive assumptions ILaSalle (2),

Halkin (1) and Levinson (3) proved that the "bang-bang" con-

trols (elements of K, in our case) can be chosen to be
piecewise constant or piecewise continuous. From Theorem T

it follows that this can be the case if and only if each
- extremal element of K is plecewise continuous (or differs



